5G時代巨大數據流量對于通訊終端的芯片、天線等部件提出了更高的要求,器件功耗大幅提升的同時,引起了這些部位發熱量的急劇增加。BN氮化硼散熱膜是當前5G射頻芯片、毫米波天線、無線充電、無線傳輸、IGBT、印刷線路板、AI、物聯網等領域最為有效的散熱材料,具有不可替代性。
氮化硼膜材特點:高導熱、低介電、絕緣、透波、抗電壓、柔性
六方氮化硼(h-BN)這種二維結構材料,又名白石墨烯,看上去像著名的石墨烯材料一樣,僅有一個原子厚度。但是兩者很大的區別是六方氮化硼是一種天然絕緣體而石墨烯是一種完美的導體。與石墨烯不同的是,h-BN的導熱性能很好,可以量化為聲子形式(從技術層面上講,一個聲子即是一組原子中的一個準粒子)。基于二維氮化硼納米片的復合薄膜,此散熱膜具有透電磁波、高導熱、高柔性、高絕緣、低介電系數、低介電損耗等優異特性,是5G射頻芯片、毫米波天線領域最為有效的散熱材料之一。
“5G”一詞通常用于指代第5代移動網絡。5G是繼之前的標準(1G、2G、3G、4G 網絡)之后的最新全球無線標準,并為數據密集型應用提供更高的帶寬。除其他好處外,5G有助于建立一個新的、更強大的網絡,該網絡能夠支持通常被稱為 IoT 或“物聯網”的設備爆炸式增長的連接——該網絡不僅可以連接人們通常使用的端點,還可以連接一系列新設備,包括各種家用物品和機器。公認的5G優勢是:
(1)具有更高可用性和容量的更可靠的網絡
(2)更高的峰值數據速度(多Gbps)
(3)超低延遲
與前幾代網絡不同,5G網絡利用在26GHz 至40GHz范圍內運行的高頻波長(通常稱為毫米波)。由于干擾建筑物、樹木甚至雨等物體,在這些高頻下會遇到傳輸損耗,因此需要更高功率和更高效的電源。5G部署最初可能會以增強型移動寬帶應用為中心,滿足以人為中心的多媒體內容、服務和數據接入需求。增強型移動寬帶用例將包括全新的應用領域、性能提升的需求和日益無縫的用戶體驗,超越現有移動寬帶應用所支持的水平。
毫米波通信是未來無線移動通信重要發展方向之一,目前已經在大規模天線技術、低比特量化ADC、低復雜度信道估計技術、功放非線性失真等關鍵技術上有了明顯研究進展。但是隨著新一代無線通信對無線寬帶通信網絡提出新的長距離、高移動、更大傳輸速率的軍用、民用特殊應用場景的需求,針對毫米波無線通信的理論研究與系統設計面臨重大挑戰,開展面向長距離、高移動毫米波無線寬帶系統的基礎理論和關鍵技術研究,已經成為新一代寬帶移動通信最具潛力的研究方向之一。
毫米波雷達的優勢:毫米波由于其頻率高、波長短,具有如下特點:
頻譜寬,配合各種多址復用技術的使用可以極大提升信道容量,適用于高速多媒體傳輸業務;可靠性高,較高的頻率使其受干擾很少,能較好抵抗雨水天氣的影響,提供穩定的傳輸信道;方向性好,毫米波受空氣中各種懸浮顆粒物的吸收較大,使得傳輸波束較窄,增大了竊聽難度,適合短距離點對點通信;波長極短,所需的天線尺寸很小,易于在較小的空間內集成大規模天線陣。
毫米波的缺點:毫米波也有一個主要缺點,那就是不容易穿過建筑物或者障礙物,并且可以被葉子和雨水吸收。這也是為什么5G網絡將會采用小基站的方式來加強傳統的蜂窩塔。
熱管理在電子產業的重要性:熱管理(Thermal Management)顧名思義,就是對“熱“進行管理。熱管理系統廣泛應用于國民經濟以及國防等各個領域,控制著系統中熱的分散、存儲與轉換。先進的熱管理材料構成了熱管理系統的物質基礎,而熱傳導率則是所有熱管理材料的核心技術指標。導熱率,又稱導熱系數,反映物質的熱傳導能力,按傅立葉定律,其定義為單位溫度梯度(在1m長度內溫度降低1K)在單位時間內經單位導熱面所傳遞的熱量。熱導率大,表示物體是優良的熱導體;而熱導率小的是熱的不良導體或為熱絕緣體。
5G手機以及硬件終端產品的小型化、集成化和多功能化,毫米波穿透力差,電子設備和許多其他高功率系統的性能和可靠性受到散熱問題的嚴重威脅。要解決這個問題,散熱材料必須在導熱性、厚度、靈活性和堅固性方面獲得更好的性能,以匹配散熱系統的復雜性和高度集成性。愛彼電路(iPcb?)是專業高精密PCB電路板研發生產廠家,可批量生產4-46層pcb板,電路板,線路板,高頻板,高速板,HDI板,pcb線路板,高頻高速板,雙面,多層線路板,hdi電路板,混壓電路板,高頻電路板,軟硬結合板等