半導體技術的進步推動了相控陣天線在整個行業的普及。早在幾年前,軍事應用中已經開始出現從機械轉向天線到有源電子掃描天線(AESA)的轉變,但直到最近,才在衛星通信和5G通信中取得快速發展。小型AESA具有多項優勢,包括能夠快速轉向、生成多種輻射模式、具備更高的可靠性;但是,在IC技術取得重大進展之前,這些天線都無法廣泛使用。平面相控陣需要采用高度集成、低功耗、高效率的設備,以便用戶將這些組件安裝在天線陣列之后,同時將發熱保持在可接受的水平。
相控陣技術
在行業向體積和重量更小的小型陣列轉變期間,IC起到了重大的推動作用。傳統的電路板結構基本使用小型PCB板,其上的電子元件垂直饋入天線PCB的背面。在過去的20年中,這種方法不斷改進,以持續減小電路板的尺寸,從而減小天線的深度。下一代設計從這種板結構轉向平板式方法,平板設計大大減小了天線的深度,使它們能更容易地裝入便攜應用或機載應用當中。要實現更小的尺寸,需要每個IC足夠程度的集成,以便將它們裝入天線背面。
半導體技術和封裝
相控陣天線技術近年來的普及離不開半導體技術發展的推動。SiGe BiCMOS、絕緣體上硅(SOI)和體CMOS中的高級節點將數字和RF電路合并到一起。這些IC可以執行陣列中的數字任務,以及控制RF信號路徑,以實現所需的相位和幅度調整。如今,我們已經可以實現多通道波束成型IC,此類IC可在4通道配置中調整增益和相位,最多可支持32個通道,可用于毫米波設計。在一些低功耗示例中,基于硅的IC有可能為上述所有功能提供單芯片解決方案。在高功率應用中,基于氮化鎵的功率放大器顯著提高了功率密度,可以安裝到相控陣天線的單元構件中。這些放大器傳統上一般使用基于行波管(TWT)的技術或基于相對低功耗的GaAs的IC。
在機載應用中,我們看到了平板架構日益盛行的趨勢,因為其同時具有GaN技術的功率附加效率(PAE)優勢。GaN還使大型地基雷達能夠從由TWT驅動的碟形天線轉向由固態GaN IC驅動、基于相控陣的天線技術。我們目前能使用單芯片GaN IC,這類IC能提供超過100 W的功率,PAE超過50%。將這種效率水平與雷達應用的低占空比相結合,可以實現表貼解決方案,以散除外殼基座中產生的熱量。這些表貼式功率放大器大大減小了天線陣列的尺寸、重量和成本。在GaN的純功率能力以外,與現有GaAs IC解決方案相比的額外好處是尺寸減小了。舉例來說,相比基于GaAs的放大器,X波段上6 W至8 W的基于GaN的功率放大器占位面積可減少50%或以上。在將這些電子器件裝配到相控陣天線的單元構件中時,這種占位面積的減小有著顯著的意義。
封裝技術的發展也大大降低了平面天線架構的成本。高可靠性設計可能使用鍍金氣密外殼,芯片和線纜在其內部互連。這些外殼在極端環境下更堅固,但體積大,且成本高昂。多芯片模塊(MCM)將多個MMIC器件和無源器件集成到成本相對較低的表貼封裝中。MCM仍然允許混合使用半導體技術,以便最大化每個器件的性能,同時大幅節省空間。例如,前端IC中可能包含PA、LNA和T/R開關。封裝基座中的熱通孔或固體銅廢料被用于散熱。為了節省成本,許多商業、軍事和航空航天應用都開始使用成本更低的表貼封裝選項。
相控陣波束成型IC
集成式模擬波束成型IC一般被稱為核心芯片,旨在為包括雷達、衛星通信和5G通信在內的廣泛應用提供支持。這些芯片的主要功能是準確設置每個通道的相對增益和相位,以在天線主波束所需的方向增加信號。該波束成型IC專為模擬相控陣應用或混合陣列架構而開發,混合陣列架構將一些數字波束成型技術與模擬波束成型技術結合起來。
ADAR1000 X-/Ku波段波束成型IC是一款4通道器件,覆蓋頻段為8 GHz至16 GHz,采用時分雙工(TDD)模式,其發射器和接收器集成在一個IC當中。在接收模式下,輸入信號通過四個接收通道并組合在通用RF_IO引腳中。在發射模式下,RF_IO輸入信號被分解并通過四個發射通道。
簡單的4線式串行端口接口(SPI)可以控制所有片內寄存器。兩個地址引腳可對同一串行線纜上的最多四個器件進行SPI控制。專用發射和接收引腳可同步同一陣列中的所有內核芯片,且單引腳可控制發射和接收模式之間的快速切換。這款4通道IC采用7 mm×7 mm QFN表貼封裝,可輕松集成到平板陣列當中。高度集成,再加上小型封裝,可以解決通道數量較多的相控陣架構中一些尺寸、重量和功率挑戰。此器件在發射模式下功耗僅為240 mW/通道,在接收模式下功耗僅為160 mW/通道。
發射和接收通道直接可用,在外部設計上可以與前端IC配合使用。具有全360°相位覆蓋,可以實現小于2.8°的相位步長和優于30 dB的增益調整。ADAR1000集成片上存儲器,可存儲多達121個波束狀態,其中一個狀態包含整個IC的所有相位和增益設置。發射器提供大約19 dB的增益和15 dBm的飽和功率,其中接收增益約為14 dB。另一個關鍵指標是增益設置內的相位變化,在20 dB范圍內約為3°。同樣,在整個360°相位覆蓋范圍內,相位的增益變化約為0.25 dB,緩解了校準難題。